Course Form for PKU Summer School International 2024

Course Title	Title in English: Introduction to Affective Intelligent Robotics	
	Title in Chinese: 情感智能机器人引论	
Teacher	王韬 Tao WANG	
First day of classes	July 1, 2024	
Last day of classes	July 26, 2024	
Course Credit	2 credits	

Course Description

Objective:

- 1. Let students understand the historical development and key technologies of affective intelligent robots;
- 2. Enable students to master the core concepts of hardware and software of affective intelligent robot system;
- 3. Let students have an understanding on the important research fields of affective intelligent robots, enable them to conduct more in-depth research in the future.

Pre-requisites /Target audience

Undergraduate and graduate students with unlimited majors

Proceeding of the Course

The course is a four-week, 32 hours program scheduled for July 2 to July 26 2024, with classes each Tuesday (16:10 - 18:00), Wednesday (15:10 - 18:00) and Friday from (15:10 - 18:00). Sessions will combine class teaching and discussion.

Assignments (essay or other forms)

One Essay submitted by the end of the course

Evaluation Details

- Participation: 50%
- Essay: 50%

Text Books and Reading Materials

Handbook of Robotics 2nd Ed.
Bruno Siciliano, Oussama Khatib (Eds.)
Springer
2016
978-3-319-32550-7

Academic Integrity (If necessary)

CLASS SCHEDULE (Subject to adjustment)			
Session 1: The historical development of robots	Date: July 2, 2024		
 [Description of the Session] (purpose, requirements, class and prescheduling, etc.) What is a robot? The historical development of robots. 	esentations		
[Questions] Why "robots" instead of "machines"?			
【Readings, Websites or Video Clips】 None			
【Assignments for this session (if any)】 None			
Session 2: Modern robots	Date: July 3, 2024		
 [Description of the Session] (purpose, requirements, class and prescheduling, etc.) Kinds of robots The characteristics of various kinds of robots 	esentations		
[Questions] Imagine a practical scenario, what would a robot look like? What usefu have?	l abilities does it		
【Readings, Websites or Video Clips】 None			
【Assignments for this session (if any)】 None			
Session 3: Basic concept of robotics	Date: July 5, 2024		
 [Description of the Session] (purpose, requirements, class and prescheduling, etc.) Hardware structure of robots Simplified model of intelligent robots 	esentations		

Preliminary kinematics and dynamics **[**Questions] 1. What components should a robot have? 2. Why can robots complete tasks such as movement and operation? **Readings**, Websites or Video Clips None **[**Assignments for this session (if any)**]** None Session 4: Overview of robot sensing Date: July 9, 2024 [Description of the Session] (purpose, requirements, class and presentations scheduling, etc.) ۲ General perception process Sensors commonly used for robots • **Questions** 1. What steps does a robot need to perceive the environment? 2. What sensors do robots need? **K**Readings, Websites or Video Clips None **[**Assignments for this session (if any)**]** None Session 5: Common sensing methods (part 1) Date: July 10, 2024 **[**Description of the Session **]** (purpose, requirements, class and presentations scheduling, etc.) \bullet Visual sensing Distance sensing • • Inertial sensing **(**Ouestions **)** 1. What are the principles of these sensing methods? 2. How to implement these sensing methods?

Keadings, Websites or Video Clips None	
[Assignments for this session (if any)] None	
Session 6: Common sensing methods (part 2)	Date: July 12, 2024
 (Description of the Session) (purpose, requirements, class and puscheduling, etc.) Auditory sensing Force/tactile sensing 	resentations
 Questions 1. What are the principles of these sensing methods? 2. How to implement these sensing methods? 	
Keadings, Websites or Video Clips None	
[Assignments for this session (if any)] None	
Session 7: Software architecture of intelligent robots	Date: July 16, 2024
 (Description of the Session) (purpose, requirements, class and puscheduling, etc.) Layered robot control architecture Robot Operating System (ROS) (Questions) 1. What are the advantages of layered robot control structure? 	resentations
 What are the advantages of hayered robot control structure? What benefits does ROS bring to robot design/manufacturing? 	
Keadings, Websites or Video Clips None	
[Assignments for this session (if any)] None	
Session 8: <i>Mobile robots</i>	Date: July 17, 2024

• Fundamentals of mobile robots	
 Simultaneous Localization and Mapping (SLAM) 	
[Questions]	
 What is the relationship between mobility planning and obstacle av difference? 	voidance? What's the
2. What are the commonly used map representations? Which scenario for?	os are they suitable
[Readings, Websites or Video Clips] None	
Assignments for this session (if any) None	
Session 9: Intelligent manipulation	Date: July 19, 2024
[Description of the Session] (purpose, requirements, class and p	resentations
scheduling, etc.)	
 Grasping and manipulation tasks 	
 Singularity 	
Compliant motion	
Visual servoing	
[Questions]	
-	
1. What constraints should be considered during manipulation planning	ng?
 What constraints should be considered during manipulation planning. When is compliant motion required? When is visual servoing required. 	•
	•
 2. When is compliant motion required? When is visual servoing required? [Readings, Websites or Video Clips] None 	•
2. When is compliant motion required? When is visual servoing required? Keadings, Websites or Video Clips	•
 2. When is compliant motion required? When is visual servoing required? None [Assignments for this session (if any)] 	•
 2. When is compliant motion required? When is visual servoing required? (Readings, Websites or Video Clips) None None 	ired?
 2. When is compliant motion required? When is visual servoing required? When is visual servoing requirements, websites or Video Clips and the Session (If any) [Assignments for this session (If any)] None Session 10: Affective intelligent robots [Description of the Session] (purpose, requirements, class and point of the Session] 	Date: July 23, 2024
 2. When is compliant motion required? When is visual servoing required [Readings, Websites or Video Clips] None [Assignments for this session (if any)] None Session 10: Affective intelligent robots [Description of the Session] (purpose, requirements, class and p scheduling, etc.) 	Date: July 23, 2024
 2. When is compliant motion required? When is visual servoing required [Readings, Websites or Video Clips] None [Assignments for this session (if any)] None Session 10: Affective intelligent robots [Description of the Session] (purpose, requirements, class and p scheduling, etc.) Overview of affective intelligent robots 	Date: July 23, 2024
 2. When is compliant motion required? When is visual servoing required [Readings, Websites or Video Clips] None [Assignments for this session (if any)] None Session 10: Affective intelligent robots [Description of the Session] (purpose, requirements, class and p scheduling, etc.) 	Date: July 23, 2024
 2. When is compliant motion required? When is visual servoing required [Readings, Websites or Video Clips] None [Assignments for this session (if any)] None Session 10: Affective intelligent robots [Description of the Session] (purpose, requirements, class and p scheduling, etc.) Overview of affective intelligent robots 	Date: July 23, 2024

[Readings, Websites or Video Clips] None	
【Assignments for this session (if any)】 None	
Session 11: Methods for emotion recognition	Date: July 24, 2024
 Description of the Session (purpose, requirements, class and puscheduling, etc.) Basics of emotion recognition Multimodal emotion recognition CQuestions How can robots quickly recognize human emotions? 	resentations
<pre>【Readings, Websites or Video Clips】 None 【Assignments for this session (if any)】 None</pre>	
Session 12: <i>Roboethics</i>	Date: July 26, 2024
 (Description of the Session) (purpose, requirements, class and puscheduling, etc.) Roboethics Coexistence of humans and affective intelligent robots (Questions) Are there any ethical issues for robots that you have seen? Why? 	resentations
[Readings, Websites or Video Clips] None	
(Assignments for this session (if any)) None	